Fast Template Evaluation using Vector Quantization

Amin Sadeghi, David Forsyth (msadeghi2.daf@illinois.edu)

Motivation
- Object detection systems run many templates all over the image. Each template is sensitive to a certain pattern and computes a score at each location.

Fast Evaluation of Legacy Templates
- **HOG Features**
 - Use Haar-like features for object detection.
 - Fast computation of HOG features.

- **Vector Quantization For Compression**
 - Replace each cell with an index. (e.g., 0-255)
 - More arithmetic operations in a second.
 - No need for floating point, use 16-bit fixed point operations.
 - No multiplication is involved; only addition.

- **Cascade of Templates**
 - Template evaluation is always a bottleneck.
 - Prior techniques to speed up template evaluation:
 - Random-access score computation
 - Faster operations, fixed point operations
 - Compute look-up tables from legacy detectors
 - About 100 times memory saving while training
 - Can access all training examples on RAM while training

Fast Deformation Estimate
- Instead of global search over a range of deformations, search locally using hit clipping.

Conclusion
- One order of magnitude speedup for template evaluation
- Ten orders of magnitude speedup for object detection

Properties
- Random-access score computation
- Compatible with Cascade
- No multiplications, only additions
- Faster operations. Fixed point operations
- Backward Compatibility
- Compute look-up tables from legacy detectors
- About 100 times memory saving while training
- Can access all training examples on RAM while training

Further Applications
- Faster training
- Real-time object detection

Further Speedup
- Why compute HOG features?

Code Library
http://vision.cs.illinois.edu/fvq/

Fast Code Available for
- Deformable Part Model Object Detection
- Fast Exemplar Template Evaluation
- General Template Evaluation

- Implemented in MATLAB/C++ using fast mex Els
 - Parallel processing and SIMD operations
 - Start by downloading the library and running demo.m

Computation Cost Model
- **HOG features computation**
- **Per Image preprocess**
- **Per Category preprocess**
- **Per (Image x Category)** processes

PASCAL 2007 Dataset
- Average end-to-end time to detect 20 object categories

Results
- **Computation Time vs. Estimation Error**
 - PCA
 - VQ

Fast Evaluation of Legacy Templates
- **HOG Features**
 - Image
 - HOG features

- **Vector Quantization For Compression**
 - Replace each cell with an index. (e.g., 0-255)

- **Cascade of Templates**
 - Random-access score computations allows for efficient cascade implementation.

- **Fast Deformation Estimate**
 - Instead of global search over a range of deformations, search locally using hit clipping.

Fast Template Evaluation using Vector Quantization

Computation Time vs. Estimation Error

<table>
<thead>
<tr>
<th>Computation Cost Model</th>
<th>HOG features computation</th>
<th>Per Image preprocess</th>
<th>Per Category preprocess</th>
<th>Per (Image x Category) processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average end-to-end time to detect 20 object categories</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Motivation
- Object detection systems run many templates all over the image. Each template is sensitive to a certain pattern and computes a score at each location.

Fast Evaluation of Legacy Templates
- **HOG Features**
 - Use Haar-like features for object detection.
 - Fast computation of HOG features.

- **Vector Quantization For Compression**
 - Replace each cell with an index. (e.g., 0-255)
 - More arithmetic operations in a second.
 - No need for floating point, use 16-bit fixed point operations.
 - No multiplication is involved; only addition.

- **Cascade of Templates**
 - Template evaluation is always a bottleneck.
 - Prior techniques to speed up template evaluation:
 - Random-access score computation
 - Faster operations, fixed point operations
 - Compute look-up tables from legacy detectors
 - About 100 times memory saving while training
 - Can access all training examples on RAM while training

Fast Deformation Estimate
- Instead of global search over a range of deformations, search locally using hit clipping.

Conclusion
- One order of magnitude speedup for template evaluation
- Ten orders of magnitude speedup for object detection

Properties
- Random-access score computation
- Compatible with Cascade
- No multiplications, only additions
- Faster operations. Fixed point operations
- Backward Compatibility
- Compute look-up tables from legacy detectors
- About 100 times memory saving while training
- Can access all training examples on RAM while training

Further Applications
- Faster training
- Real-time object detection

Further Speedup
- Why compute HOG features?

Code Library
http://vision.cs.illinois.edu/fvq/

Fast Code Available for
- Deformable Part Model Object Detection
- Fast Exemplar Template Evaluation
- General Template Evaluation

- Implemented in MATLAB/C++ using fast mex Els
 - Parallel processing and SIMD operations
 - Start by downloading the library and running demo.m

Computation Cost Model
- **HOG features computation**
- **Per Image preprocess**
- **Per Category preprocess**
- **Per (Image x Category)** processes

PASCAL 2007 Dataset
- Average end-to-end time to detect 20 object categories

Results
- **Computation Time vs. Estimation Error**
 - PCA
 - VQ